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Abstract 
New pregnene analogs of N-hydroxamic acid 6, imino-propane hydrazides 7 and 8 as well as the aryl amides 9–11, oxa-
diazole, pyrazole and sulfinyl analogs 13–15, via the hydrazide analog 5 of methyl ((5-pregnen-3β,17β-diol-15α-yl)thio)
propanoate (4) were synthesized. The in vitro cytotoxic activities of selected synthesized steroids against two human prostate 
cancer cell lines (PC-3, and LNCaP-AI) were evaluated by MTT assay. Compound 10 was the most active cytotoxic agent 
among these steroids against PC-3 and LNCaP-AI cell lines with inhibition of 96.2%, and 93.6% at concentration levels of 
10.0 μM and 91.8%, and of 79.8% at concentration of 1.0 μM, respectively. Molecular docking study of 10 showed a hydro-
gen bonding with the amino acid Asn705 residue of the receptor 1E3G, together with hydrophobic interactions. Therefore, 
compound 10 can be considered as a promising anticancer agent due to its potent cytotoxic activity.

Graphic abstract

Keywords  Amides · Anticancer activity · Molecular docking study · Oxadiazole · Pregnene analogs · Pyrazole

Introduction

Prostate cancer (PCa) is the second common invasive cancer 
in male worldwide [1]. Because PCa is initially androgen 
sensitive, it will respond to anti-hormonal therapy. Later 
it becomes androgen-refractory and continues to progress 
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in the absence of androgens [2]. This form of the disease 
is known as castrate resistance PCa (CRPC), which has no 
effective therapeutic strategies at this time [3]. Several phar-
maceutically active ingredients have been approved for the 
treatment of CRPC in patients; however, progression is often 
inevitable [4]. Among the approved compounds are steroids, 
which form an essential class of biologically active com-
pounds [5–7]. Steroids and their derivatives are promising 
drugs for the treatment of several diseases including autoim-
mune diseases [8], cardiovascular diseases [9], brain tumors 
[10], breast cancer [11], prostate cancer [12], or osteoar-
thritis [13]. Moreover, they act as antiviral agents [14–16].

Inhibition of the vital androgen biosynthesis enzyme 
CYP17 17α-hydroxy/17,20-lyase prevents androgen pro-
duction, which has been shown to be an effective treatment 
option for prostate carcinoma [17, 18]. The synthesis of 
several CYP17 inhibitors for the treatment of PCa has since 
become an emerging field [19–26]. Recently, our laboratory 
reported chalconyl steroid 1 (Fig. 1) as a CYP17 inhibitor 
with an IC50 value of 0.61 μM [27]. Furthermore, Njar et al. 
[28] reported that novel steroids with azole moieties func-
tioned as potent inhibitors of cytochrome P-450 dependent 
ATRA (all-trans-retinoic acid) 4-hydroxylase enzyme. Since 
then, several steroids containing nitrogen substituents have 
been prepared as potential agents for the treatment of PCa 
[29–31]. Abiraterone acetate (Zytiga) (2, Fig. 1) [32, 33], 
galeterone (3, Fig. 1) and its D4-3-keto derivative [34–36] 
are examples of such antiandrogen compounds used for 
treatment of PCa. Ligr et al. [37] showed that mifepristone 
inhibits GRβ-coupled LNCaP-ARA70b cell proliferation. 
Additionally, finasteride (PROSCAR​®), a type II-selective 
5α-reductase inhibitor, was the first 5α-reductase (5AR) 
inhibitor approved in the USA for the treatment of benign 
prostatic hyperplasia (BPH) and PCa. Importantly, finas-
teride reduces the proliferation rate of DU145 and PC-3 
prostate cancer cells in vitro [38], although several reports 
classified these cell lines as hormone-independent [39].

In view of the varied pharmacological activities 
of steroids and chalcones and in continuation of our 

ongoing work on the synthesis of new steroidal inhibi-
tors for CYP17α hydroxylase, as well as analysis of 
17β-hydroxydehydrogenase (17β-HSD) [40] and anti-HIV 
agents [41], we report the synthesis of some new pregnene 
steroids 5–12 as well as their cytotoxicity on PC-3 and 
LNCaP-AI prostate cancer cells, and an in silico molecular 
docking study.

Results and discussion

Chemistry

((5-Pregnen-3β,17β-diol-15α-yl)thio)propanehydrazide 
(5), prepared from the ester analog 4 in 70% yield, was the 
key intermediate for the synthesis of the new substituted 
hydrazide and amide derivatives. Thus, treatment of 5 with 
NH2OH.HCl in the presence of NaOMe/MeOH furnished 
the N-hydroxy-propanamide analog 6 (60% yield). Analo-
gously, the reaction of 5 with 4-bromo-benzaldehyde or 
4-hydroxy-3-methoxy-acetophenone (acetovanillone) in 
acidic medium led to the formation of the imine deriva-
tives 7 and 8 in 57 and 62% yield, respectively. Boiling of a 
solution of 5 with 2-amino-5-nitrothiazole, 4-(4-(4-(4-ami-
nophenoxy) phenylsulfinyl)phenoxy)benzenamine, 2-amino-
4-nitrophenol, and 2,6-diamino-acridine in the presence of 
NaOMe in DMF gave, after a chromatographic purification, 
the corresponding amide derivatives 9–12 in 42–66% yield 
(Scheme 1).

The structures of 5–12 are based on their NMR (1H, 
13C, and 2D), which showed somewhat similar patterns of 
the protons and carbon atoms of pregnene moiety. The 1H 
NMR spectra of 5–12 showed two multiplets at the regions 
δ 2.90–2.65 and 2.74–2.45 ppm assigned for the methylene 
protons CH2-21 and CH2-22, respectively. The lower field 
singlet at δ 10.02 ppm was attributed to the imine proton 
(HC=N) of 7, while the resonances of the aromatic pro-
tons H-2′ + H-6′ and H-3′ + H-5′ appeared as a doublet of 
doublets at δ 7.67 and 7.75 ppm (J = 7.8 Hz), respectively. 

Fig. 1   Examples of some steroids-based anticancer agents
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The two doublets at δ 7.45 and 7.53 ppm were assigned 
for H-5 and H-6 of 8 (J5,6 = 7.7 Hz), respectively, while 
H-2 appeared as a singlet at δ 6.89 ppm. The singlet at δ 
8.15 ppm was assigned to H-4 of the thiophene ring of 9, 
whereas the broad singlets at δ 8.81 and 7.76 ppm were 
attributed to the aromatic protons H-6 and H-3 together 
with H-4 of 11. In the 13C NMR spectra, the lower field 
resonances at the regions δ 175.5–167.7 ppm were assigned 
for the carbonyl carbon atoms of amide group of 5–12. 
Resonances at δ 80.5 ppm were assigned for C-17, whereas 
the resonance signals of the C=N carbon atoms of 7 and 
8 appeared at δ 144.3 and 148.6 ppm, respectively. Com-
pounds 5–12 showed signals at the regions δ 29.9–25.5 and 
36.8–34.8 ppm, which were assigned to the methylene car-
bon atoms CH2-21 and CH2-22, respectively. In addition, 
the carbon atoms C-2, C-4 and C-5 of the thiazole moiety 
of 9 appeared at δ 147.6, 141.6 and 130.8 ppm, respectively. 
The other carbon atoms of the aromatic, pregnene backbone 
and the substituents were fully analyzed (cf. Experimental 
section). Compound 8 was selected for more detailed NMR 
studies. In the gradient-selected HMBC spectrum [42] of 
8, the MeC=N carbon atom at δ 148.6 ppm showed two 
3JC,H correlations with aromatic protons H-2′ and H-6′ at 

δΗ 7.67 ppm, while the protons of the methoxy group at 
C-5 of the aromatic ring at δΗ 3.84 ppm showed a 3JC,H a 
correlation with C-5 of the same ring at δC 152.1 ppm. In 
addition, a 2JC,H coupling between methylene protons (CH2 
at C-22) at δH 2.58 ppm and the carbonyl carbon atom of the 
amide group at δC 167.7 ppm was observed. Furthermore, 
H-15 of the pregnene scaffold at δH 3.14 ppm showed a 3JC,H 
coupling to methylene protons (CH2 at C-21) at δC 29.6 ppm 
(Fig. 2).

Next, 5 was treated with 2-chlorobenzoic acid in the pres-
ence of POCl3 to furnish the oxadiazole analog 13 in 56% 
yield. Further, treatment of 5 with acetylacetone in acidic 
EtOH afforded the 3,5-dimethyl-1H-pyrazol analog 14 in 
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Scheme 1   Conditions and reagents: (i) NH2NH2·H2O, DMF, reflux, 
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64% yield. Selective oxidation of 14 with 1.0 mol of m-chlo-
roperbenzoic acid (m-CBPA) at 0–5 °C for 5 h proceeded 
smoothly and gave, after chromatographic purification, the 
sulfoxide 15 (60%). Interestingly, there was no indication for 
the formation of a 5,6-epoxide ring resulting from possible 
oxidation of the 5,6-olefinic bond as indicated by the 1H, 13C 
NMR spectra and elemental analysis (Scheme 2).

Structures of 13–15 were established by 1H, 13C NMR 
and 2D NMR spectra. In 1H NMR spectra of 14 and 15, 
proton H-4 of the pyrazole ring resonated as a singlet at δ 
7.99 and 8.01 ppm, respectively, whereas methylene protons 
CH2-21 appeared as multiplets at δ 2.80 and 2.84. Methylene 
protons CH2-22 resonated at δ 2.64 and 2.65 ppm, respec-
tively. In the 13C NMR spectrum of 13, C-2 and C-4 of the 
oxadiazole ring appeared at δ 149.9 and 162.5 ppm, respec-
tively. In addition, the 13C resonance for C-3 of the pyrazole 
rings of 14 and 15 is shifted to δ 141.6, 142.0 ppm, while 
C-4 of the same ring appeared at δ 120.4 and 122.4 ppm, 
as well as C-5 at δ 142.0 ppm, respectively. The methylene 
protons CH2-21 and CH2-22 of 13–15 were found in the 
regions of δ 29.4–28.4 and at 36.7 ppm, respectively. All 
other aromatic and aliphatic protons and carbon atoms of 
pregnene scaffold and substituents were identified and cor-
respondingly assigned (cf. Experimental Section).

In vitro cytotoxic activity

The synthesized compounds 4, 7–10, 13, and 15 were 
selected for evaluation of their cytotoxic activity in vitro 
against two human PCa cell lines (PC-3, and LNCaP-
AI), using an MTT assay [43]. Results are summarized 
in Table 1. Some of the compounds exhibited moderate to 
strong cytotoxic activity against the tested PCa cell lines. 

In particular, compound 10 displayed strong cytotoxic 
activity at a concentration of 10.0 μM against both PC-3 
and LNCaP-AI cell lines. This molecule inhibited PC-3 
and LNCaP-AI cell growth at about 96.2%, and 93.6% 
(Table 1), respectively, and 91.8%, and 79.8% at concen-
tration of 1.0 μM (data not shown), respectively. Com-
pound 8 exhibited reduced cell proliferation of PC-3 cells 
by 77%, while it was not as effective in LNCaP-AI cells. 
Meanwhile, compound 9 showed reduced cell proliferation 
of LNCaP-AI by 79.7% but could only reduce cell viabil-
ity by 55.9% in PC-3 cells. It is clear from these data that 
substitution of the ester group of the steroid molecules by 
hydrazide or amide moieties enhances the cytotoxic effect 
of these steroids on the PCa cells, while the nature of the 
substituent of the hydrazide or amide, e.g., aromatic rings 
(compound 10) influence the relative cytotoxicity. This 
can be attributed to their disparity in either protein binding 
properties or bioavailability.
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Scheme 2   Conditions and reagents: (i) 2-chlorobenzoic acid, POCl3, reflux, 10 h; (ii) acetylacetone, EtOH, HOAc, reflux, 7 h; (iii) mCPBA, 
DCM, Stirr at 0–5 °C, 5 h

Table 1   In vitro inhibition of novel steroids

a % Inhibition is taken from three experiments at a concentration of 10 
μM; PC-3, and LNCaP-AI human PCa cell lines

Compd. % Cytotoxicity

PC-3a LNCaP-AIa

4 56.1 ± 2.76 40.7 ± 1.56
7 52.2 ± 2.02 37.9 ± 0.98
8 77.0 ± 3.00 19.1 ± 0.64
9 55.9 ± 1.97 79.7 ± 3.40
10 96.2 ± 5.77 93.6 ± 5.23
13 58.6 ± 2.20 5.4 ± 0.13
15 < 1.0 ± 0.01 25.0 ± 1.11
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Molecular docking study

The human androgen receptor (AR) (1E3G) has been 
exploited as a main therapeutic target for PCa. The three-
dimensional structure of human AR was obtained from the 
Brookhaven Protein Data Bank (PDB ID: 1E3G (http://
www.rcsb.org). The crystal structure was refined by 
removing water molecules and the cofactor, phosphate ion. 
Hydrogen atoms were added and electronic charges were 
assigned to the protein atoms using the kollman united 
atoms force field by using AutoDock Vina 1.1.2-4, 2011 
[44].

In our search for new lead compounds as human AR 
inhibitors that are structurally related to galeterone (3) as 
an AR antagonist, we identified that 10 constitutes the most 
active candidate in the above series. The binding energy 
score for 10 is—9.5 kcal mol−1, indicating a good selectiv-
ity and potency of this analog to bind to the active site of 
the protein receptor pocket (1E3G). As suggested by the 
model and visualized in Fig. 3, the location of the preg-
nene backbone in the middle of the binding pocket anchors 
the hydroxyl group at C-3 of the pregnene scaffold in a 
favorable position for a hydrogen bond with the lone pair of 
oxygen atom (C=O) of the carboxylic group of amino acid 

Fig. 3   Computer model of 
human AR (pdb id 1e3g) with 
10 shows a hydrogen bond 
between the OH group at C-3 of 
pregnene scaffold and the lone 
pair of oxygen atom (C=O) of 
the carboxylic group of amino 
acid Asn705 (2.167 Å) residue. 
In addition, non-bonded amino 
acid residues as Leu704, 
Met742, Arg752, Lys808, 
Pro682, Pro766, and Val685 of 
the receptor surrounding the 
steroid 10 were observed
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Asn705 (2.167 Å) residue. Besides this binding, there are 
non-bonded amino acid residues such as Leu704, Met742, 
Arg752, Lys808, Pro682, Pro766 and Val685 surrounded 
by 10, which further would enhance its inhibitory potency.

Experimental

Materials and methods

Melting points are uncorrected and were measured on a 
Buchi melting point apparatus B-545 (Buchi Labortechnik 
AG, Switzerland). NMR spectra were recorded on 400 MHz 
(1H) and on 75 MHz (13C) spectrometers (Bruker DPX-400, 
Germany) with TMS as internal standard and on the δ scale 
in ppm. Signal assignments for protons were performed by 
selective proton decoupling or by COSY spectra. Hetero-
nuclear assignments were verified by HSQC and HMBC 
experiments. IR spectra were recorded on a Shimadzu. TLC 
plates 60 F254 were purchased from Merck. Chromatograms 
were visualized under UV 254–366 nm and iodine. MTT 
method [43] was used for evaluation of cytotoxic activity 
after 72 h of treatment with 10 μM concentrations of these 
steroids.

((5‑Pregnen‑3β,17β‑diol‑15α‑yl)thio)propanehydrazide (5)

A mixture of methyl ((5-pregnen-3β,17β-diol-15α-yl)thio)
propanoate (4) (500 mg, 1.23 mol) and excess of hydrazine 
hydrate 80% (5 mL) in DMF (15 mL) was refluxed for 10 h. 
Progress of reaction was monitored by TLC (n-hexane–ethyl 
acetate) (3:2). The reaction mixture was evaporated and 
allowed to cool. The resulting solid was filtered, dried and 
recrystallized from EtOH to give 5 350 mg (70%) as a yellow 
powder; m.p.: 152–153 °C; Rf = 0.32; FTIR (νmax, cm−1): 
3442 (OH), 3421, 3284 (NH2), 2964, 2933 (CHaliph.) 1660 
(C=Oamide), 1633 (NH), 1633 (C=C). 1H NMR (DMSO): 
δ 9.06 (s, 1H, NHamide), 6.88 (br s, 2H, NH2), 5.28 (t, 1H, 
J6,7 = 2.3 Hz, H-6), 4.53, (br s, 1H, 3-OH), 3.72 (br s, 1H, 
17-OH), 3.44 (m, 1H, H-17), 3.27 (br s, 1H, H-3), 3.06 (m, 
1H, H-15), 2.64 (m, 2H, 2.67 (m, 2H, CH2-21), 2.45 (m, 
2H, CH2-22), 2.36 (m, 1H, H-16a), 2.31 (m, 1H, H-7a), 
2.14 (m, 2H, CH2-4), 1.81 (m, 1H, H-1a), 1.76 (m, 1H, 
H-12a), 1.68 (m, 1H, H-2a), 1.55 (m, 2H, H-8 + H-16b), 
1.55 (m, 1H, H-7b), 1.49 (m, 1H, H-11a), 1.39 (m, 1H, 
H-2b), 1.35 (m, 1H, H-11b), 1.25 (m, 1H, H-14), 0.96 (m, 
4H, Me-19 + H-12b), 0.83 (m, 2H, H-1b + H-9), 0.71 (s, 
3H, Me-18). 13C NMR (DMSO): δ 170.5 (C=Oamide), 141.6 
(C-5), 120.9 (C-6), 80.5 (C-17), 70.5 (C-3), 54.4 (C-14), 
50.5 (C-9), 43.6 (C-13 + C-16), 42.7 (C-4 + C-15), 37.7 
(C-12) 37.5 (C-1), 36.7 (C-10 + CH2-22), 31.8 (C-2), 31.3 
(C-7), 29.8 (C-8), 28.7 (CH2-21), 20.5 (C-11), 19.5 (Me-19), 

14.2 (Me-18). Anal. calc. for C22H36 N2O2S (408.60): C, 
64.67; H, 8.88; N, 6.86. Found: C, 64.59; H, 8.80; N, 6.93.

N‑Hydroxy‑((5‑pregnen‑3β,17β‑diol‑15α‑yl)thio)
propanamide (6)

A solution of hydroxylamine hydrochloride (100  mg, 
1.47 mmol) and sodium methoxide (79.3 mg, 1.47 mmol) 
in 15 mL EtOH was stirred for 2 h to produce a white 
precipitate; then a solution (300 mg, 0.73 mmol) of ster-
oid analog in (10 mL) was added, The mixture was heated 
under reflux for 12 h, after completion of reaction by TLC 
(n-hexane–ethyl acetate) (4:1) the solution was concentrated 
under reduced pressure. The residue was recrystallized from 
ethanol to afford the target compound as a light-yellow 
powder 180 mg (60%); m.p.: 208–210 °C; Rf = 0.30; FTIR 
(νmax, cm−1): 3385 (OH + NHamide), 2933, 2850 (CHaliph.) 
1724 (C=Oamide), 1660 (C=C). 1H NMR (DMSO): δ 9.03 (s, 
1H, NHamide), 8.01 (s, 1H, NOH), 5.28 (t, 1H, J6,7 = 2.23 Hz, 
H-6), 4.36, (br s, 1H, 3-OH), 3.62 (br s, 1H, 17-OH), 3.48 
(m, 1H, H-17), 3.25 (m, 1H, H-3), 3.09 (m, 1H, H-15), 
2.67 (m, 2H, CH2-21), 2.45 (m, 2H, CH2-22), 2.31 (m, 1H, 
H-16a), 2.29 (m, 1H, H-7a), 2.14 (m, 2H, CH2-4), 1.81 (m, 
1H, H-1a), 1.76 (m, 1H, H-12a), 1.68 (m, 1H, H-2a), 1.64 
(m, 2H, H-8 + H-16b), 1.50 (m, 2H, H-7b + H-11a), 1.39 (m, 
1H, H-2b), 1.35 (m, 1H, H-11b), 1.25 (m, 1H, H-14), 0.96 
(s, 4H, Me-19 + H-12b), 0.83 (m, 2H, H-1b + H-9), 0.71 (s, 
3H, Me-18). 13C NMR (DMSO): δ 172.8 (C=Ohydroxamic), 
141.6 (C-5), 120.9 (C-6), 80.5 (C-17), 70.5 (C-3), 54.4 
(C-14), 50.5 (C-9), 43.6 (C-13 + C-16), 42.7 (C-4 + C-15), 
37.7 (C-12), 37.5 (C-1), 36.8 (C-10 + CH2-22), 31.9 (C-2), 
31.3 (C-7), 29.9 (C-8 + CH2-21), 20.5 (C-11), 19.6 (Me-19), 
14.2 (Me-18). Anal. calc. for C22H36 N2O2S (409.58): C, 
64.51; H, 8.61; N, 3.42. Found: C, 64.62; H, 8.53; N, 3.33.

General procedure for the synthesis of hydrzide Schiff 
bases 7 and 8

To a solution of 5 (100 mg, 0.24 mmol) in EtOH (20 mL) 
was added the desired aldehyde or ketone (0.24 mmol) fol-
lowed by HOAc (1 mL) and the mixture was heated under 
reflux for 12–13 h. The reaction was monitored by TLC by 
using n-hexane–ethyl acetate (3:2) as eluents. After cool-
ing, the solution was poured onto ice cold water. The solid 
product was collected, filtered, dried and recrystallized from 
EtOH to give the desired product.

N′‑(4‑(Bromobenzylidene)‑3‑((5‑pregnen‑3β,17β‑diol‑15α
‑yl)thio)propanehydrazide (7)

From 4-Bromo-benzaldehyde (44  mg). Yield: 78  mg 
(57%) as a yellow powder; m.p.: 191–193 °C; Rf = 0.37; 
FTIR (νmax, cm−1): 3441 (OH), 2966, 2939 (CHaliph.), 
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1664 (C=Oamide), 1625 (C=N), 1587 (C=Carom.). 1H 
NMR (DMSO): δ 10.02 (s, 1H, HC=N), 8.72 (s, 1H, 
NHamide), 7.75 (dd, 2H, J = 7.8  Hz, Harom.-3 + Harom.-
5), 7.67 (dd, 2H, J = 7.8 Hz, Harom.-2 + Harom.-6), 5.28 
(t, 1H, J6,7 = 2.3 Hz, H-6), 4.60 (br s, 1H, OH-3), 3.72 
(s, 1H, OH-17), 3.47 (m, 1H, H-17), 3.27 (m, 1H, H-3), 
3.08 (m, 1H, H-15), 2.65 (m, 2H, CH2-21), 2.49 (m, 
2H, CH2-22), 2.37 (m, 1H, H-16a), 2.32 (m, 1H, H-7a), 
2.14 (m, 2H, CH2-4), 1.80 (m, 1H, H-1a), 1.75 (m, 1H, 
H-12a), 1.71 (m, 1H, H-2a), 1.63 (m, 2H, H-8 + H-16b), 
1.49 (m, 2H, H-7b + H-11a), 1.39 (m, 1H, H-2b), 1.35 
(m, 1H, H-11b), 1.24 (m, 1H, H-14), 0.95 (m, 4H, 
Me-19 + H-12b), 0.83 (m, 2H, H-1b + H-9), 0.70 (s, 3H, 
Me-18). 13C NMR (DMSO): δ 165.5 (C=Oamide), 144.3 
(C=N), 141.6 (C-5), 132.3 (Carom.-1 + Carom.-3 + Carom.-
5), 129.1 (Carom.-2 + Carom.-6), 123.6 (C–Br), 120.9 (C-6), 
80.5 (C-17), 70.5 (C3-OH), 54.4 (C-14), 50.5 (C-9), 43.7 
(C-13 + C-16), 42.7 (C-4 + C-15), 37.7 (C-1), 37.5 (C-12), 
36.7 (CH2-22 + C-10), 31.9 (C-2), 31.3 (C-7), 29.8 (C-7), 
28.5 (CH2-21), 20.5 (C-11), 19.5 (Me-19), 14.2 (Me-18). 
Anal. calc. for C29H39BrN2O3S (575.6): C, 60.51; H, 6.83; 
N, 4.87. Found: C, 60.45; H, 6.75; N, 4.82.

N′‑(1‑((4‑Hydroxy‑3‑methoxyphenyl)ethylidene)‑3‑((5‑preg
nen‑3β,17β‑diol‑15α‑yl)thio)propane hydrazide (8)

From 4-hydroxy-3-methoxy-acetophenone (acetovanil-
lone) (39 mg). Yield: 83 mg (62%) as a yellow powder; 
m.p.: 189-199  °C; Rf = 0.34; FTIR (νmax, cm−1): 3402 
(OH), 2931, 2854 (CHaliph.), 1674 (C=Oamide), 1658 (C=N), 
1589 (C=Carom.), 1126 (Cphenol–OH). 1H NMR (DMSO): δ 
9.36 (s, 1H, Ar-OH), 8.00 (s, 1H, NHamide), 7.53 (d, 1H, 
J5,6 = 7.7  Hz, Harom.-6), 7.45 (d, 1H, Harom.-5), 6.89 (s, 
1H, Harom.-2), 5.28 (t, 1H, J6,7 = 2.3, H-6), 4.62 (br s, 1H, 
3-OH), 3.84 (s, 3H, OMe), 3.81 (s, 1H, 17-OH), 3.39 (m, 
1H, H-17), 3.27 (m, 1H, H-3), 3.14 (m, 1H, H-15), 2.88 (m, 
2H, CH2-21), 2.58 (m, 5H, Me-C=N+CH2-22), 2.35 (m, 1H, 
H-16a), 2.29 (m, 1H, H-7a), 2.10 (m, 2H, CH2-4), 1.91 (m, 
1H, H-1a), 1.76 (m, 1H, H-12a), 1.72 (m, 1H, H-2a), 1.57 
(m, 4H, H-8 + H-16b), 1.51 (m, 2H, H-7b + H-11a), 1.39 (m, 
1H, H-2b), 1.35 (m, 1H, H-11b), 1.25 (m, 1H, H-14), 0.96 
(m, 4H, H-12b + Me-19), 0.83 (m, 2H, H-1b + H-9), 0.71 (s, 
3H, Me-18). 13C NMR (DMSO): δ 167.7 (C=Oamide), 152.1 
(C–OH + C-OMe), 148.0 (MeC=N), 141.6 (C-5), 129.3 
(Carom.-1), 123.8 (Carom.-6), 120.3 (C-6), 115.4 (Carom.-2), 
111.6 (Carom.-5), 80.6 (C-17), 70.5 (C-3). 56.1 (OMe), 54.4 
(C-14), 50.5 (C-9), 42.7 (C-13 + C-16), 42.1 (C-4 + C-15), 
37.7 (C-12), 37.5 (C-1), 36.7 (C-10 + CH2-22), 31.9 (C-2), 
31.3 (C-7), 29.8 (C-8), 29.6 (CH2-21), 26.7 (MeC=N), 
20.5 (C-11), 19.5 (Me-19), 14.2 (Me-18). Anal. calc. for 
C29H39BrN2O3S (575.6): C, 60.51; H, 6.83; N, 4.87. Found: 
C, 60.45; H, 6.75; N, 4.82.

General procedure for the synthesis of aryl amide 
derivatives 9–11

To a solution of 4 (100 mg, 0.24 mmol) in DMF (25 mL) 
were added substituted amine (0.36 mmol) and NaOMe 
(190 mg, 0.36 mmol) and the reaction mixture was heated 
under reflux for 16–24 h. Progress of the reaction was moni-
tored by TLC (n-hexane–ethyl acetate) (4:1). After comple-
tion of the reaction, the mixture was cooled and added to ice 
water then extracted with DCM (3 × 20 mL). The combined 
organic extracts were dried (Na2SO4), filtered and, evapo-
rated to dryness. The residue was purified on a SiO2 column 
(5 g), using n-hexane–ethyl acetate (4:1) as eluent to give the 
desired amide derivative.

N‑(5‑Nitrothiazol‑2‑yl)((5‑pregnen‑3β,17β‑diol‑15α‑yl)thio)
propanamide (9)

From 2-amino-5-nitrothiazole (52  mg). Yield: 55  mg 
(44%) as a yellow powder; m.p.: 136–137 °C; Rf = 0.31; 
FTIR (νmax, cm−1): 3410 (OH), 2933, 2854 (CHaliph.),1664 
(C=Oamide), 1548 (C=Nthiazole), 1461 (C=Cthiazole). 1H NMR 
(DMSO): δ 9.39 (br s, 1H, NHamide), 8.15 (s, 1H, Hthiazole-4), 
5.29 (br s, 1H, H-6), 4.63, (br s, 1H, 3-OH), 3.64 (s, 1H, 
17-OH), 3.36 (m, 1H, H-17), 3.20 (m, 1H, H-3), 3.15 (m, 
1H, H-15), 2.81 (m, 2H, CH2-21), 2.74 (m, 2H, CH2-22), 
2.30 (m, 1H, H-16a), 2.20 (m,1H, H-7a), 2.11 (m, 2H, 
CH2-4), 1.92 (m, 1H, H-1a), 1.79 (m, 1H, H-12a), 1.73 
(m 1H, H-2a), 1.68 (m, 2H, H-8 + H-16b), 1.52 (m, 2H, 
H-7b + H-11a), 1.40 (m, 1H, H-2b), 1.35 (m, 1H, H-11b), 
1.25 (m, 1H, H-14), 1.01 (m, 4H, H-12b + Me-19), 0.87 (m, 
2H, H-1b + H-9), 0.70 (s, 3H, Me-18). 13C NMR (DMSO): 
δ 172.4 (C=Oamide), 147.6 (Cthiazole-2), 141.6 (Cthiazole-4), 
139.8 (C-5), 130.8 (Cthiazole-5), 120.6 (C-6), 80.5 (C-17), 
70.5 (C-3), 54.4 (C-14), 50.5 (C-9), 43.6 (C-13 + C-16) 42.7 
(C-4 + C-15), 37.7 (C-12), 37.5 (C-1), 36.7 (C-10 + CH2-
22), 31.9 (C-2), 31.2 (C-7), 29.8 (C-8), 29.5 (CH2-21), 
20.5 (C-11), 19.5 (Me-19), 14.2 (Me-19). Anal. calc. for 
C25H35N3O3S2 (521.69): C, 57.56; H, 6.76; N, 8.05. Found: 
C, 57.42; H, 6.55; N, 7.89.

N‑(4‑(4‑(4‑(4‑Aminophenoxy)phenylsulfonyl)phenoxy)
phenyl)((5‑pregnen‑3β,17β‑diol‑15α‑yl thio)propanamide 
(10)

From 4-(4-(4-(4-aminophenoxy)phenylsulfinyl)phenoxy)
benzenamine (151 mg). Yield: 120 mg (62%) as a brown 
powder; m.p.: 120–122 °C; Rf = 0.24; FTIR (νmax, cm−1): 
3458 (OH), 3375, 3230 (NH2), 3091 (C–Harom.), 2933, 
2904 (CHaliph.), 1662 (C=Oamide), 1579, 1487 (C=Carom.), 
1149 (SO2), 1072 (C–O–C). 1H NMR (DMSO): δ 8.52 
(s,1H, NHamide), 7.97 (br s, 2H, NH2), 7.92 (dd, 6H, 
J = 7.9 Hz, Harom.-3″ + Harom.-5″ + Harom.-2′″ + Harom.-6′″), 
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7.13 (dd, 6H, J = 7.9  Hz, Harom.-2′ + Harom.-6′ + Harom.-
2″ + Harom.-6″Harom.-3′″ + Harom.-5′″), 6.48 (dd, 2H, 
J = 7.9 Hz, Harom.-3′ + Harom.-3′), 6.28 (dd, 2H, J = 7.9 Hz, 
Harom.-2″″ + Harom.-6″″), 6.23 (dd, 2H, J = 7.9  Hz, 
Harom.-3″″ + Harom.-5″″), 5.36 (br s,1H, H-6), 4.51 (br s, 
1H, 3-OH), 3.62 (s, 1H, 17-OH), 3.49 (m, 1H, H-17), 3.29 
(m, 1H, H-3), 3.07 (m, 1H, H-15), 2.90 (m, 2H, CH2-21), 
2.74 (m, 2H, CH2-22), 2.30 (m, 2H, H-7a + H-16a), 2.12 
(m, 2H, CH2-4), 1.80 (m, 1H, H-1a), 1.76 (m, 1H, H-12a), 
1.72 (m 1H, H-2a), 1.69 (m, 4H, H-8 + H-16b), 1.49 (m, 
2H, H-7b + H-11a), 1.40 (m, 1H, H-2b), 1.35 (m, 1H, 
H-11b), 1.24 (m, 1H, H-14), 0.96 (m, 4H, H-12b + Me-19), 
0.84 (m, 2H, H-1b + H-9), 0.72 (s, 3H, Me-18). 13C NMR 
(DMSO): δ 172.4 (C=Oamide), 162.1 (Carom.-1″ + Carom.-4″), 
155.9 (Carom.-4′), 151.3 (Carom.-1″″ + Carom.-NH2), 141.6 
(C-5), 135.3 (Carom.-4″ + Carom.-1′″), 130. 9 (Carom.-1′), 
130.2 (Carom.-3″ + Carom.-5″ + Carom.-2′″ + Carom.-6′″), 120.9 
(C-6 + Carom.-3″″ + Carom.-5″″), 118.2 (Carom.-2′ + Carom.-
6′ + Carom.-3′″ + Carom.-5′″), 111.3 (Carom.-2″″ + Carom.-6″″), 
107.4 (Carom.-3′ + Carom.-5′), 80.5 (C-17), 70.5 (C-3), 54.4 
(C-14), 51.9 (C-9), 43.6 (C-13 + C-16), 42.7 (C-4 + C-15), 
37.5 (C-12), 36.7 (C-1), 36.3 (C-10 + CH2-22), 31.9 
(C-7 + C-8), 31.3 (C-2), 29.8 (C-7), 28.4 (C-8), 25.8 
(CH2-21), 20.5 (C-11), 19.5 (Me-19), 14.2 (Me-18). Anal. 
calc. for C46H52N2O7S2 (809.05): C, 68.29; H, 6.48; N, 3.46. 
Found: C, 68.13; H, 6.35; N, 3.58.

N‑(2‑Hydroxy‑5‑nitrophenyl) 
((5‑pregnen‑3β,17β‑diol‑15α‑yl)thio)propanamide (11)

From 2-amino-4-nitrophenol (55 mg). Yield:70 mg (66%) 
as a red powder; m.p.: 114–116  °C; Rf = 0.27; FTIR 
(νmax, cm−1): 3444 (OH), 2937, 2902 (CHaliph.), 1625 
(C=Oamide), 1525, 1436 (C=Carom.). 1H NMR (DMSO) δ 
9.76 (s, 1H, NHamide), 8.81 (br s, 1H, Harom.-6), 7.76 (br s, 
2H, Harom.-3 + Harom.-4), 5.03 (br s, 1H, H-6), 4.40, (br s, 
1H, 3-OH), 3.40 (m, 2H, 17-OH-17 + H-17), 3.25 (m, 1H, 
H-3 + H-15), 2.85 (m, 2H, CH2-21), 2.55 (m, 2H, CH2-22), 
2.41 (m, 2H, H-7a + H-16a), 2.07 (m, 2H, CH2-4), 1.89 (m, 
1H, H-1a), 1.81 (m, 1H, H-12a), 1.78 (m 1H, H-2a), 1.56 
(m, 2H, H-8 + H-16b), 1.51 (m, 2H, H-7b + H-11a), 1.43 (m, 
1H, H-2b), 1.30 (m, 1H, H-11b), 1.25 (m, 1H, H-14), 1.10 
(m, 4H, H-12b + Me-19), 0.71 (m, 2H, H-1b + H-9), 0.58 
(s, 3H, Me-18). 13C NMR (DMSO): δ 174.1 (C=Oamide), 
148.7 (Carom.–OH), 146.5 (Carom.–NO2), 142.0 (C-5), 130.6 
(Carom.-1′), 129.0 (Carom.-3′), 123.5 (Carom.-3′), 120.3 (C-6), 
80.5 (C-17), 70.6 (C-3), 54.6 (C-14), 50.4 (C-9), 43.7 
(C-13 + C-16), 42.7 (C-4 + C-15), 37.7 (C-12), 37.5 (C-1), 
36.7 (C-10 + CH2-22), 31.9 (C-2), 29.8 (C-7), 29.5 (C-8), 
25.5 (CH2-21), 20.8 (C-11), 19.5 (Me-19), 14.4 (Me-18). 
Anal. calc. for C28H38N2O6S (530.68): C, 63.37; H, 7.22; 
N, 5.28. Found: C, 63.25; H, 7.01; N, 5.21.

2,6‑Bis‑((5‑pregnen‑3β,17β‑diol‑15α‑yl)
thio)‑N,N′‑acridine‑propenamide (12)

From 2,6-diamino-acridine (94 mg). Yield: 100 mg (42%) 
as a red powder; m.p.: 197–199 °C; Rf = 0.18; FTIR (νmax, 
cm−1): 414 (OH), 3232 (NHamide), 2935, 2864 (CHaliph.), 
1722 (C=Oamide), 1660 (C=N), 1602 (C=Carom.). 1H 
NMR (DMSO): δ 8.71 (s, 1H, NHamide), 7.97 (br s, 2H, 
Harom.-3′ + Harom.-3′), 7.86 (m, 3H, Harom.-4′ + Harom.-
7′ + Harom.-8′), 7.74 (m, 2H, Harom.-1′ + Harom.-9′), 5.27 (br 
s, 1H, H-6), 4.64 (br s, 1H, 3-OH), 3.95 (s, 1H, 17-OH), 
3.61 (m, 1H, H-17), 3.35 (m, 1H, H-3), 3.07 (m, 1H, 
H-15), 2.75 (m, 2H, CH2-21), 2.55 (m, 2H, CH2-22), 2.32 
(m, 2H, H-7a + H-16a), 2.14 (m, 2H, CH2-4), 1.79 (m, 
1H, H-1a), 1.72 (m, 1H, H-12a), 1.67 (m, 1H, H-2a), 1.62 
(m, 2H, H-8 + H-16b), 1.53 (m, 2H, H-8 + H-16b), 1.48 
(m, 2H, H-7b + H-11a), 1.38 (m, 1H, H-2b), 1.30 (m, 1H, 
H-11b), 1.24 (m, 1H, H-14), 0.95 (m, 4H, H-12b + Me-19), 
0.82 (m, 2H, H-1b + H-9), 0.70 (s, 3H, Me-18). 13C NMR 
(DMSO): δ 172.4 (C=Oamide), 150.2 (Carom.-9′), 144.4 
(Carom.-4a′ + Carom.-6′ + Carom.-10a′), 141.6 (C-5), 134.0 
(Carom.-2′ + Carom.-8′), 132.5 (Carom.-3′), 130.7 (Carom.-8a′), 
129.1 (Carom.-7′), 120.8 (C-6 + Carom.-1a′ + Carom.-4′), 115.0 
(Carom.-9a′), 113.5 (C-5′), 80.5 (C-17), 70.5 (C-3), 54.4 
(C-14), 50.5 (C-9), 43.6 (C-13 + C-16), 42.7 (C-4 + C-15), 
37.6 (C-12), 36.7 (C-1), 34.8 (C-10 + CH2-22), 31.3 (C-2), 
29.8 (C-7), 28.4 (C-8), 27.8 (CH2-21), 20.5 (C-11), 19.5 
(Me-19), 14.2 ((Me-18). Anal. calc. for C57H75N3O6S2 
(962.36): C, 71.14; H, 7.86; N, 4.37. Found: C, 71.24; H, 
8.11; N, 4.17.

15α‑(2‑(5‑(2‑Chlorophenyl)‑1,3,4‑oxadiazol‑2‑yl)ethylthio)‑
5‑pregnen‑3β,17β‑diol (13)

To a solution of 5 (130 mg, 0.31 mmol) in POCl3 (8 mL) was 
added 2-chlorobenzoic acid (50 mg, 0.32 mmol) and the reac-
tion mixture was heated under reflux with stirring for 10 h. The 
reaction mixture was monitored by TLC, using n-hexane–ethyl 
acetate (3:2) as eluents. After cooling, the mixture was poured 
onto crushed ice. The solid product was washed with a satu-
rated solution NaHCO3 and the organic layer extracted with 
DCM (3 × 20 mL). The combined organic layers were evapo-
rated to dryness and then recrystallized from EtOH to give 13 
(93 mg, 56%) as a brown powder; m.p.: 118–119 °C; Rf = 0.3; 
FTIR (νmax, cm−1): 3417 (OH), 2939 and 2862 (CHaliph.) 1689 
(C=Noxadiazole), 1658, 1566 (C=Carom.). 1H NMR (DMSO): 
δ 7.97 (dd, 1H, J = 2.0, 7.8 Hz, Harom.-6′), 7.56 (dd, 1H, 
J = 2.0, 7.8 Hz, Harom.-3′), 7.18 (m, 2H, Harom.-4′ + Harom.-
4′), 5.12 (br s, 1H, H-6), 4.29 (br s, 1H, 3-OH), 3.84 (s, 1H, 
17-OH), 3.39 (m, 1H, H-17), 3.20 (m, 1H, H-3), 3.08 (m, 1H, 
H-15), 2.65 (m, 2H, CH2-21), 2.60 (m, 2H, CH2-22), 2.27 
(m, 2H, H-7a + H-16a), 2.05 (m, 2H, CH2-4), 1.79 (m, 1H, 
H-1a), 1.75 (m, 1H, H-12a), 1.68 (m, 1H, H-2a), 1.58 (m, 
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2H, H-8 + H-16b), 1.53 (m, 2H, H-7b + H-11a), 1.41 (m, 1H, 
H-2b), 1.30 (m, 1H, H-11b), 1.25 (m, 1H, H-14), 0.97 ((m, 
4H, H-12b + Me-19), 0.75 (m, 2H, H-1b + H-9), 0.70 (s, 3H, 
Me-18). 13C NMR (DMSO): δ 162.3 (Coxadiazole-5′), 149.9 
(Coxadiazole-2′), 139.9 (C-5), 136.9 (Carom.-1″), 128.4 (Carom.-2″), 
127.2 (Carom.-3″ + Carom.-4″ + Carom.-6″), 123.0 (Carom.-5″), 
121.8 (C-6), 82.0 (C-17), 73.6 (C-3), 53.7 (C-14), 49.9 (C-9), 
42.4 (C-13 + C-16), 41.7 (C-4 + C-15), 38.1 (C-12), 37.5 (C-1), 
36.7 (C-10 + CH2-22), 31.0 (C-2), 29.6 (C-7), 29.2 (C-8), 28.4 
(CH2-21), 20.3 (C-11), 19.3 (Me-19), 14.86 (Me-18). Anal. 
calc. for C29H37ClN2O3S (529.14): C, 65.83; H, 7.05; N, 5.09. 
Found: C, 65.72; H, 7.22; N, 5.07.

15α‑((2‑(3,5‑Dimethyl‑1H‑pyrazol‑1‑yl)ethyl)
thio)‑5‑pregnen‑3β,17β‑diol (14)

A solution of acetylacetone (0.03 mL, 0.24 mmol) in EtOH 
(10 mL) containing AcOH (1 mL) was stirred at room tem-
perature for 1 h; then a solution of 5 (100 mg, 0.24 mmol) 
was added and the reaction mixture was refluxed for 7 h. 
The reaction was monitored by TLC using n-hexane: ethyl 
acetate (3:2) as eluent. After cooling at room tempera-
ture, the reaction mixture, the obtained crystalline product 
was filtered, dried and purified by recrystallization from 
EtOH to give 14 (73 mg 64%) as a light-yellow powder; 
m.p.: 203–204 °C; Rf = 37; FTIR (νmax, cm−1): 3394 (OH), 
3031 (CHarom.), 2931, 2846 (CHaliph.), 1691 (C=Oamide), 
1666 (C=N), 1542 (C=Carom.). 1H NMR (DMSO): δ 7.99 
(s, 1H-Hpyrazole-4), 5.28 (br s, 1H, Hz, H-6), 4.64 (m, 1H, 
3-OH), 3.60 (br s, 1H, 17-OH), 3.44 (m, 1H, H-17), 3.27 
(m, 1H, H-3), 3.09 (m, 1H, H-15), 2.80 (m, 2H, CH2-21), 
2.64 (m, 2H, CH2-22), 2.31 (s, 3H, C3′pyrazole-Me), 2.29 (s, 
3H, C5′pyrazole-Me), 2.14 (m, 2H, H-7a + H-16a), 2.09 (m, 
2H, CH2-4), 1.80 (m, 1H, H-1a), 1.76 (m, 1H, H-12a), 1.71 
(m, 1H, H-2a), 1.57 (m, 2H, H-8 + H-16b), 1.49 (m, 2H, 
H-7b + H-11a), 1.35 (m, 1H, H-2b), 1.30 (m, 1H, H-11b), 
1.24 (m, 1H, H-14), 0.96 (s, 4H, Me-19 + H-12b), 0.82 (m, 
2H, H-1b + H-9), 0.70 (s, 3H, Me-18); 13C NMR (DMSO): 
δ 142.0 (Cpyrazole-5′), 141.6 (C-5 + Cpyrazole-3′), 120.9 (C-6), 
120.4 (Cpyrazole-4′), 80.5 (C-17), 70.5 (C-3), 54.4 (C-14), 
50.5 (C-9), 43.6 (C-13 + C-16), 42.7 (C-4 + 15), 37.7 
(C-12), 37.5 (C-1), 36.7 (C-10 + CH2-22), 31.9 (C-2), 31.3 
(C-7), 29.8 (C-8), 29.1 (CH2-21), 20.5 (C-11), 19.5 (Me-
19), 14.2 (Me-18), 12.2 (2xCpyrazole-Me). Anal. calc. for 
C26H40N2O2S.1/5H2O (453.66): C, 68.82; H, 9.10; N, 6.17. 
Found: C, 68.71; H, 8.53; N, 5.99.

15α‑((2‑(3,5‑Dimethyl‑1H‑pyrazol‑1‑yl)ethyl)sulfinyl)‑5α,6β
‑epoxy‑pregnan‑3β,17β‑diol (15)

To a solution of m-chloroperoxybenzoic acid (76  mg, 
0.44 mmol) in DCM (15 mL) was added dropwise a solution 
of 15 (120 mg, 0.29 mmol) in DCM (10 mL). The reaction 

mixture was stirred at 0–5 °C for 5 h. The reaction was moni-
tored by TLC using (n-hexane: ethyl acetate) (3:2) until the 
reaction was completed. The mixture was partitioned between 
DCM (3 × 20 mL) and a solution of NaHCO3, and the com-
bined organic layer was dried (Na2SO4), filtered and evapo-
rated to dryness. The residue was purified on a SiO2 column 
(5 g) using n-hexane: ethyl acetate (4:1) as eluent to afford 15 
as a white solid (85 mg, 60%); m.p.: 186–188 °C; Rf = 0.34. 
1H NMR (DMSO): δ 8.01 (s, 1H-Hpyrazole-4), 5.28 (br s, 1H, 
H-6), 4.63 (br s, 1H, 3-OH), 3.55 (br s, 1H, 17-OH), 3.37 (m, 
1H, H-17), 3.25 (m, 1H, H-3), 3.15 (m, 1H, H-15), 2.84 (m, 
2H, CH2-21), 2.65 (m, 2H, CH2-22), 2.15 (m, 6H, C3′pyrazole-
Me + C5′pyrazole-Me), 2.11 (m, 4H, CH2-4 + 7a + 16a), 1.81 (m, 
1H, H-1a), 1.76 (m, 1H, H-12a), 1.72 (m, 1H, H-2a), 1.52 (m, 
2H, H-8 + H-16b), 1.49 (m, 2H, H-7b + H-11a), 1.39 (m, 1H, 
H-11b), 1.26 (m, 1H, H-14), 0.98 (s, 4H, Me-19 + H-12b), 
0.87 (m, 2H, H-1b + H-9), 0.71 (s, 3H, Me-18). 13C NMR 
(DMSO): δ 144.5 (Cpyrazole-3′), 142.0 (C-5 + Cpyrazole-5′), 
122.4 (Cpyrazole-4′), 120.4 (C-6), 80.0 (C-17), 70.5 (C-3), 
54.5 (C-9), 50.9 (C-14), 47.3 (C-9), 42.6 (C-13 + C-16), 42.1 
(C-4 + C-15), 37.5 (C-1 + C-12), 36.7 (C-10 + CH2-22), 33.6 
(C-2), 31.9 (C-7), 31.6 (C-8), 29.4 (CH2-21), 20.5 (C-11), 
19.5 (C-19), 14.2 (C-18), 12.2 (2xCpyrazole-Me). Anal. calc. for 
C26H40N2O3S.1/2 H2O (469.66): C, 66.48; H, 8.79; N, 5.96. 
Found: C, 66.20; H, 8.37; N, 5.62.

In vitro cytotoxic assay

Evaluation of the cytotoxic activity in vitro of 4, 7–10, 13, 
and 15 against two human PCa cell lines (PC-3, and LNCaP-
AI) was described previously [45]. Briefly, human PCa cell 
lines PC-3 (androgen receptor negative) and LNCaP-AI 
(androgen receptor positive) were obtained from the Ameri-
can Type Culture Collection (Rockville, MD). LNCaP-AI 
and PC-3 cells were grown in RPMI medium containing 
5% fetal bovine serum (FBS, Gibco) supplemented with 1% 
penicillin–streptomycin. LNCaP-AI and PC-3 cells were 
plated in 96 well cell plates at 1 × 104 per cell for 24 h. Cells 
were treated with 10.0 μM concentration of sample (5 μL/
well) for 48 h. Each experiment was performed three times 
in quadruplicate. After 72 h, 100 μL/well of MTT (2 mg/
mL in PBS) was added for 4 h in the dark. After removal of 
MTT solution, 100 μL/well DMSO was added to dissolve 
the formazan purple crystal for 10 min. The absorbance at 
540 nm was then measured by using a Molecular Devices 
SpectaMax 190.

Conclusion

A novel series of N-hydroxamic acid 6, imino-propane 
hydrazides derivatives 7 and 8 as well as the aryl amide 
analogs 9–11 of methyl ((5-pregnen-3β,17β-diol-15α-yl)
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thio)propanoate (4) were synthesized. Several analogs were 
assayed for anticancer activity against two human PCa cell 
lines, PC-3 and LCNaP-AI. It was found that compound 
10 was the most active molecule and showed a significant 
cytotoxic effect against both PCa cell lines (> 90%). Dock-
ing studies performed with the human AR homology model 
(PDB: 1E3G) suggested the presence of hydrogen bonding 
between hydrogen atom of OH group on our synthesized 
steroids at C-3 and the lone pair of oxygen atom (C=O) of 
amino acid Asn705 of AR, in addition to the hydrophobic 
interactions. Therefore, 10 could be a promising lead as anti-
cancer agent against PCa cells due to its potent cytotoxic 
activity.
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